
Supplementary Note 2

1 Derivation of the fractional DNA occupancy as a function of buffered metal concen-
tration

1.1 Chemical equilibria and mass balance

In the following system:

P+M
K1−−⇀↽−− PM, K1 =

[PM]

[P][M]
,

PD+M
K2−−⇀↽−− PMD, K2 =

[PMD]

[PD][M]
,

P+D
K3−−⇀↽−− PD, K3 =

[PD]

[P][D]
,

PM+D
K4−−⇀↽−− PMD, K4 =

[PMD]

[PM][D]
·

The constants K1−4 are connected by the following relationship

K3 =
K1

K2
K4.

The fraction of DNA bound to sensor protein (θD) and the sub-fraction bound solely to metalated sensor

protein (θDM) are defined at each metal concentration as:

θD =
[PD]+ [PMD]

[DT]
, (1)

θDM =
[PMD]

[DT]
, (2)

where

[DT] = [D]+ [PD]+ [PMD]

[DT] is the concentration of DNA targets and its value is independent of the buffered metal concentration

[M]. At any given buffered metal concentration, the total protein concentration [PT] is:

[PT] = [P]+ [PM]+ [PD]+ [PMD].

The protein abundance and fractional DNA occupancy are both dependent on [M]. Relating linearly [PT]

and θD for co-repressors and de-repressors:

[PT]− [P0]

[P1]− [P0]
=

θD−θD0

θD1−θD0
, (3)

where [P0] and θD0 are the total protein concentration and the fractional DNA occupancy at low cognate

metal concentration, respectively, and [P1] and θD1 are the equivalent values calculated high cognate



metal concentration. An equivalent equation can be written for CueR and ZntR-like activators, with a

linear relationship between [PT] and θDM:

[PT]− [P0]

[P1]− [P0]
=

θDM−θDM0

θDM1−θDM0
. (4)

The numerical values of θD0, θD1, θDM0 and θDM1 can (in the first instance, see 1.3.2 and 1.3.4) be

derived from the computational approach we recently developed13.

1.2 Variables

To simplify derivation, variables and constants are renamed as follows:

x = [P], v = [PD], a = K1,

y = [M], w = [PMD], b = K2,

z = [D], PT = [PT], c = K3,

DT = [DT], P0 = [P0], d = K4.

u = [PM], P1 = [P1],

1.3 Derivation of equations

Here the equations expressing θD and θDM as a function of the buffered metal concentration y are de-

rived. From the chemical equilibria and mass balances the following relationships between variables are

obtained:

a =
u
xy

, (5)

b =
w
vy
, (6)

d =
w
zu
, (7)

DT = z+ v+w, (8)

PT = x+u+ v+w = x+u+DT− z. (9)

Using (5), (6) and (7), u and w can be expressed as:

u = axy, w = bvy = duz. (10)

With (8) v can be determined:

DT = z+ v+w = z+ v+duz ⇒ v = DT− z−duz.

By substituting v into (10) z can be expressed as

byv = by(DT− z−duz) = duz,

z =
DTby

du+by+bduy
.



1.3.1 Derivation of equation to determine θD for co-repressors and de-repressors

Equation (3) can be rewritten as

PT =
∆P
∆θD

θD +AD, (11)

where

∆P = P1−P0,

∆θD = θD1−θD0,

AD = P0−
θD0∆P
∆θD

. (12)

The definition of θD from (1) can be rearranged as:

θD =
v+w
DT

= 1− z
DT

, (13)

and substituted into (11), giving:

PT =
∆P
∆θD

θD +AD,

x+u+DT− z =
∆P
∆θD

(
1− z

DT

)
+AD,

x+u−C1z =C2, (14)

where

C1 = 1− ∆P
∆θD ·DT

, (15)

C2 =
∆P
∆θD

+AD−DT. (16)

z and u can be substituted into (14) to find x

x+axy−C1 ·
DTby

adxy+by+abdxy2 =C2,

x(1+ay)(adx+b+abdxy)−C1DTb =C2(adx+b+abdxy),

x2(1+ay)(ad +abdy)+ x[b(1+ay)−C2(ad +abdy)]−C1DTb−C2b = 0. (17)

Equation (17) expresses the variable x (corresponding to [P]) as a function of y, the buffered metal

concentration [M]. It can be rewritten, introducing the coefficients α,β ,γ , as

αx2 +βx+ γ = 0,

where

α = (1+ay)(ad +abdy),

β = b(1+ay)−C2(ad +abdy),

γ =−b(C1DT +C2).

By substituting the numerical values of the constants, it is noticed that, for any given value of y, α is

positive and γ is negative. The two solutions of the quadratic equation, x1 and x2, are linked by the

relationship

x1x2 =
γ

α



As γ

α
< 0, one of the two solutions is negative and hence is meaningless. Therefore the positive solution

is retained

x =
−β +

√
β 2−4αγ

2α
. (18)

Finally, fractional DNA occupancy θD can be derived as a function of the buffered metal concentration

only as follows

θD = 1− z
DT

θD = 1− by
du+by+bduy

θD = 1− b
b+(ad +abdy)x

. (19)

Equation (19) can be solved using an electronic spreadsheet to calculate θD given a range of buffered

metal concentrations (y), considering that the relationship between x and y is given by (18) (Supplemen-

tary Dataset).

1.3.2 Calculation of θD0 and θD1 (an alternative approach)

A simplified form of equation (19) can be used to calculate numerical values of θD0 and θD1 (3) from an

electronic spreadsheet (Supplementary Dataset).

1.3.3 Derivation of equation to determine θDM

Equation (4) can then be rewritten as

PT =
∆P

∆θDM
θDM +ADM, (20)

where

∆θDM = θDM1−θDM0,

ADM = P0−
θDM0∆P
∆θDM

.

and then using (9) and (2)

x+u+DT− z = B
w

DT
+ADM,

where

B =
∆P

∆θDM
. (21)

w, z and u can be substituted to find x

x+axy− bDT

adx+b+abdxy
− B ·abdxy

adx+b+abdxy
= ADM−DT,

x2(1+ay)(ad +abdy)+ x[b(1+ay)−Babdy− (ADM−DT)(ad +abdy)]−bADM = 0. (22)

Similarly to the previous case, equation (22) can be rewritten as

λx2 +µx+ν = 0,



where

λ = (1+ay)(ad +abdy),

µ = b(1+ay)−Babdy− (ADM−DT)(ad +abdy),

ν =−bADM.

Also in this case, λ > 0 and ν < 0 for any given value of y, the positive solution of the quadratic equation

is

x =
−µ +

√
µ2−4λν

2λ
. (23)

The expression of θDM as a function of y, the buffered metal concentration, is then

θDM =
w

DT

θDM =
duz
DT

θDM =
abdxy

b+(ad +abdy)x
. (24)

Equation (24) can be solved using an electronic spreadsheet to calculate θDM given a [M] (y) range,

considering that the relationship between x and y is given by equation (23) (Supplementary Dataset).

1.3.4 Calculation of θDM0 and θDM1 (an alternative approach)

A simplified form of equation (24) can be used to calculate numerical values of θDM0 and θDM1 (4) from

an electronic spreadsheet (Supplementary Dataset).

2 Calculation of fractional DNA occupancy at different salt concentrations

DNA affinities have a log-log dependence on salt concentration29,30. Apo-Zur, Zn(II)-Zur and Ni(II)-

NikR DNA affinities were experimentally determined at various salt concentrations, and the mean of the

regression lines of logKDNA vs. log[salt] plots was used to calculate DNA affinities for the other sensors

at 500 mM salt from the values in Table 1 measured at 300 mM. With the K3 or K4 values at 500 mM

salt, fractional DNA occupancies θD and θDM were calculated using equations (19) and (24).

3 Derivation of fractional DNA occupancy as a function of buffered metal concentration
considering sensor binding to non-specific DNA

An excess of non-specific DNA competes in vivo with the specific consensus sequences for sensor

binding. To incorporate non-specific DNA, here represented as D∗, in the model it is necessary to

introduce two additional reactions to the system presented in section 1.1:

P+D* K∗3−−⇀↽−− PD*, K∗3 =
[PD∗]
[P][D∗]

,

PM+D* K∗4−−⇀↽−− PMD*, K∗4 =
[PMD∗]
[PM][D∗]

·



The total concentration of non-specific DNA binding sites, [D∗T], can be calculated by dividing the

concentration of available non-specific DNA base pairs (10-4 M bp in E. coli26) by the average length of

DNA binding sequences used as specific targets (33 bp). The mass balance for non-specific DNA is

[D∗T] = [D∗]+ [PD∗]+ [PMD∗],

while the mass balance for the protein, incorporating sensor binding to non-specific DNA, is now

[PT] = [P]+ [PM]+ [PD]+ [PMD]+ [PD∗]+ [PMD∗].

The affinities of Zur for non-specific DNA, K∗3 and K∗4 , were experimentally measured on the nixA

promoter at 100 mM salt. Non-specific DNA affinities at 300 mM salt were calculated from the slope of

the regression line of the Zur logKDNA vs log[salt] and the (small) coupling free energy on non-specific

DNA
(
∆G∗c =−RT ln(K∗4

K∗3
)
)

was determined for Zur. The non-specific DNA affinities of the other sensors

were estimated by maintaining the same proportion between ∆G∗c and ∆Gc and with K∗3 and K∗4 flanking

K3 for co-repressors and flanking K4 for the de-repressor and activators (K3 or K4 respectively defining

the midpoint on a logarithmic scale between K∗3 and K∗4 ).

The fraction of specific DNA sites bound to sensor protein (θD) and the sub-fraction bound solely

to metalated sensor protein (θDM) are defined at each metal concentration by equations (1) and (2). For

co-repressors and de-repressors the total protein concentration [PT] relates linearly to θD as expressed

in equation (3), for CueR and ZntR-like activators the relationship between [PT] and θDM is given in

equation (4).

3.1 Variables

In addition to the variables presented in 1.2, the additional variables and constants are renamed as follows

to simplify computation:

e = K∗3 , h = [D∗]

f = K∗4 , i = [PD∗]

g = K∗2 , j = [PMD∗]

D∗T = [D∗T].

3.2 Derivation of equations

From the chemical equilibria and mass balances the following relationships are derived:

e =
i

xh
, (25)

f =
j

uh
, (26)

D∗T = h+ i+ j, (27)

PT = x+u+ v+w+ i+ j = x+u+DT− z+D∗T−h. (28)



Using (25) and (26), i and j can be expressed as

i = exh, j = f uh (29)

and h can then be derived from (27)

h =
D∗T

1+ ex+ f u

3.2.1 Derivation of equation to determine θD for co-repressors and de-repressors

Equation (11) can be rewritten using (13) and (28) as

PT =
∆P
∆θD

θD +AD,

x+u+DT− z+D∗T−h =
∆P
∆θD

(
1− z

DT

)
+AD,

x+u−C1z−h =C∗2 , (30)

where

C1 = 1− ∆P
∆θD ·DT

,

C∗2 =
∆P
∆θD

+AD−DT−D∗T.

The variables u, z and h can be substitued into (30) to find x

x+axy−C1 ·
DTby

adxy+by+abdxy2 −
D∗T

1+ ex+a f xy
=C∗2 ,

x3(1+ay)(ad +abdy)(e+a f y)+ x2
{
(1+ay)(ad +abdy)+

[
b(1+ay)−C∗2(ad +abdy)

]
(e+a f y)

}
+

+ x
[
b(1+ay)−C∗2(ad +abdy)−b(C1DT +C∗2)(e+a f y)−D∗T(ad +abdy)

]
−b(C1DT +C∗2 +D∗T)

(31)

Equation (31) expresses the variable x (corresponding to [P]) as a function of y, the buffered metal

concentration [M]. It is possible to numerically solve the cubic equation using an electronic spreadsheet

or a computing environment. In all the cases examined a positive and two negative solutions were

obtained and the positive solution was retained to calculate θD from equation (19). Due to the complex

analysis required to solve the cubic equation, a Supplementary Dataset in not provided.

3.2.2 Calculation of θD0 and θD1

A simplified form of equation (31) can be used to calculate numerical values of θD0 and θD1 (3) from an

electronic spreadsheet or a computing environment.



3.2.3 Derivation of equation to determine θDM

Equation (20) can be rewritten using (2), (10) and (28) as

x+u+DT− z+D∗T−h = B
w

DT
+ADM, (32)

where is expressed by eqaution (21). The variables u, z and h can be substitued into (32) to find x

x+axy+DT−
DTby

adxy+by+abdxy2 +D∗T−
D∗T

1+ ex+a f xy
= B

abdxy2

adxy+by+abdxy2 +ADM

x3(1+ay)(ad +abdy)(e+a f y)+ x2
{
(1+ay)(ad +abdy)+

[
b(1+ay)−Babdy−

− (ADM−DT−D∗T)(ad +abdy)
]
(e+a f y)

}
+ x
[
b(1+ay)−Babdy− (ADM−DT−

−D∗T)(ad +abdy)−b(ADM−D∗T)(e+a f y)−D∗T(ad +abdy)
]
−bADM = 0

(33)

Equation (33) can be numerically solved using an electronic spreadsheet or a computing environ-

ment. In all the cases examined a positive and two negative solutions were obtained and the positive

solution was used to calculate θDM from equation (24). Due to the complex analysis required to solve

the cubic equation, a Supplementary Dataset in not provided.

3.2.4 Calculation of θDM0 and θDM1

A simplified form of equation (33) can be used to calculate numerical values of θDM0 and θDM1 (3) from

an electronic spreadsheet or a computing environment.

4 Derivation of the relationship between total metal bound to buffer and buffered metal
concentration

The buffered metal system is described as

B+M
K5−−⇀↽−− BM, K5 =

[BM]

[B][M]
(34)

The concentration of buffering species, [BT], and the total metal concentration in the buffer system, [MT],

are:

[MT] = [M]+ [BM] (35)

[BT] = [B]+ [BM] (36)

From equations (35) and (36), [BM] and [B] can be derived and substituted into equation (34):

[BM] = [MT]− [M]

[B] = [BT]− [BM] = [BT]− [MT]+ [M]

K5 =
[MT]− [M]

([BT]− [MT]+ [M]) [M]
. (37)



Equation (37) can be rearranged to express [MT] as a function of [M]

[MT] =
K5[M]2 +(K5[BT]+1)[M]

1+K5[M]
. (38)

An example of the use of this relationship is shown in Figure 4b.
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